
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Golden-ratio search for
finding extrema

Introduction

• In this topic, we will

– Review the idea of using bisection for finding a minimum

– Describe the idea of trisection

– Consider increasing efficiency by halving the number of
function evaluations

– Introduce the golden ratio and the reciprocal thereof

– Look at an implementation

– Give an example

Golden-ratio search

2

Bracketed methods

• Suppose you are aware there is a unique local minimum on an
interval [a0, b0]

– We will develop a bracketed technique that attempts to reduce
the width of the interval

Golden-ratio search

3

Midpoint

• Suppose we know there is a minimum on the interval [ak, bk]

– Suppose we mimic the bisection method and calculate the mid-
point:

– Does f (mk) allow us to reduce the width of the interval?

Golden-ratio search

4

2

k k
k

a b
m

bkak

f (x)

bkak

f (x)

mk mk

Trisection

• Suppose, instead, we trisect the interval:

Golden-ratio search

5

2

3

k k
k

a b
r

2

3

k k
k

a b

bkak

f (x)

bkak

f (x)

ℓk rk ℓk rk

2

3
k k kb b a

2

3
k k ka b a

Trisection

• Consequently,

– If , we can restrict the minimum to [ak, rk]

• Thus, set ak+1 ← ak and bk+1 ← rk

– If , we can restrict the minimum to [ℓk, bk]

• Thus, set ak+1 ← ℓk and bk+1 ← bk

Golden-ratio search

6

 k kf f r

 k kf f r

bkak

f (x)

bkak

f (x)

ℓk rk ℓk rk

Trisection

• Can we do better?

– In both these images, our next interval is [ak, rk]

Golden-ratio search

7

bkak

f (x)

bkak

f (x)

ℓk rk ℓk rk

Trisection

• Thus, with each step,

– We reduce the width of the interval by a factor of 2/3

– We require two function evaluations

• Function evaluations are likely the most expensive operation

– Can we reduce the work required?

Golden-ratio search

8

Trisection

• By trisecting the interval,

– The point ℓk is dead center of the interval [ak, rk]

Golden-ratio search

9

bkak

f (x)

ℓk rk

Fifths

• Let’s divide the interval into fifths:

Golden-ratio search

10

2 3

5

k k
k

a b
r

3 2

5

k k
k

a b

bkak

f (x)

ℓk rk

3

5
k k kb b a

3

5
k k ka b a

Fifths

• Having divided the interval into fifths:

Golden-ratio search

11

bkak

f (x)

ℓk rk

bk +1ak +1

f (x)

ℓk+1rk +1

1k kr

Golden ratio

• Can we choose a scaling factor so that

– Let’s choose a scaling factor s :

– Suppose bk+1 ← rk

Golden-ratio search

12

1 ?k kr

 k k k kr a s b a

 k k k kb s b a

 1 1 1 1k k k kr a s b a

 k k ka s s b a

 2

k k k k k kb s b a a s b a

 2

k k ka s b a

Golden ratio

• Thus, if

– Expand this out:

– Thus, we have:

– Only one of these is positive:

Golden-ratio search

13

1k kr

 2

k k k k k kb s b a a s b a

 20 k k k k k ks b a s b a a b

 2 1k kb a s s

 21 1 4 1 1

2 1
s

1 5

2
s

1 5

2

5 1
0.618034

2

Golden ratio

• Now we have that :

Golden-ratio search

14

bkak

f (x)

ℓk rk

bk +1ak +1

f (x)

ℓk+1 rk +1

1k kr

Golden ratio

• This is called a golden-ratio search because

Golden-ratio search

15

5 1
1.618034

2

1 5 1
0.618034

2

1
1

2 1

3 2 1

Golden ratio

• Thus, with each step,

– We reduce the width of the interval by a factor of 1/

– We require only one function evaluation

• Note that with two function evaluations,

we reduce the interval width to 1/ 2 ≈ 0.381966

• Recall when we did trisection, two function evaluations were

required with each step

we reduce the interval width by 2/3 ≈ 0.666667

• Consequently, for the same number of function evaluations,

we can converge must more quickly

Golden-ratio search

16

Implementation

std::pair<double, double> golden(

double f(double x), double a, double b,

double eps_step, double eps_abs,

unsigned int max_iterations

) {

assert(a < b);

double const INV_PHI{ (std::sqrt(5.0) - 1.0)/2.0 };

double width{ (b - a)*INV_PHI };

double x1{ b - width };

double x2{ a + width };

double f1{ f(x1) };

double f2{ f(x2) };

assert(std::isfinite(f1) && std::isfinite(f2));

Golden-ratio search

17

Implementation

for (unsigned int k{0}; k < max_iterations; ++k) {

width *= INV_PHI;

if (f1 < f2) {

if ((width < eps_step) && (std::abs(f1 - f2) < eps_abs)) {

return std::make_pair(x1, f1);

}

b = x2;

x2 = x1;

f2 = f1;

x1 = b - width;

f1 = f(x1);

assert(std::isfinite(f1));

} else ...

Golden-ratio search

18

Implementation

} else if (f2 < f1) {

if ((width < eps_step) && (std::abs(f1 - f2) < eps_abs)) {
return std::make_pair(x2, f2);

}

a = x1;

x1 = x2;

f1 = f2;

x2 = a + width;

f2 = f(x2);

assert(std::isfinite(f2));

} ...

Golden-ratio search

19

Implementation
} else {

assert(f1 == f2);

if (width < eps_step) {

return std::make_pair((x1 + x2)/2.0, f1);

}

a = x1;

b = x2;

width *= INV_PHI*INV_PHI;

x1 = b - width;

f1 = f(x1);

x2 = a + width;

f2 = f(x2);

assert(std::isfinite(f1) && std::isfinite(f2));

}

}

return std::make_pair(NAN, NAN);

}

Golden-ratio search

20

Example

• Find the first minimum of 2e–2x – e–x starting with [1, 2]

1 1.3819660113 1.6180339887 2

–0.0972088747 –0.1249976480 –0.1196517697 –0.0987040055

1 1.3819660113 1.6180339887

–0.0972088747 –0.1249976480 –0.1196517697

1.2360679775 1.3819660113 1.6180339887

–0.1217155585 –0.1249976480 –0.1196517697

1.2360679775 1.3819660113 1.4721359550

–0.1217155585 –0.1249976480 –0.1241541532

Golden-ratio search

21

1.2360679775

–0.1217155585

1.4721359550

–0.1241541532

1.3262379212

–0.1245211032

Summary

• Following this topic, you now

– Understand a bracketed method for finding a minimum

– Are aware of the usefulness of using the reciprocal of the golden
ratio

– Have seen an implementation

– Have seen an example

Golden-ratio search

22

References

[1] https://en.wikipedia.org/wiki/Golden-section_search

Golden-ratio search

23

Acknowledgments

None so far.

Golden-ratio search

24

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Golden-ratio search

25

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Golden-ratio search

26

